Prevention and Control of Infectious Diseases

by
Dr. Sten Vermund

This session seeks to...

- Review lessons learned from prior successes and failures in major disease control efforts
- Highlight key strategies for infectious disease control and prevention in the context of past successes and failures

Considerations in Infectious Disease Control and Prevention

- Societal contacts and factors influence the risk of disease
- Some IDs and vaccines confer life long immunity
- Many are asymptomatic or subclinical
- Outbreak prevention may have a timetable of days
- ID epidemiology is concerned with risk factors, host characteristics, and agent transmission details that impact on prevention and control

Basic Reproductive Rate

- Number of new infections expected from a single infected person, measure of infectivity

Examples

- High: Measles, BRR>30
- Moderately High: Rubella, BRR=12
- Moderate: Smallpox, Polio, BRR=4
- Low: Malaria in the southeast USA and in southern Italy, BRR<2
- Lower BRR makes elimination/eradication more feasible

Control, Elimination, or Eradication of infectious diseases?

Control: When eradication/elimination are unrealistic for biological or economic reasons, control of disease and reduced transmission is the goal with cost-effective measures

Elimination: Such low transmission in a given region that the problem is no longer of major public health concern

Eradication: Global absence of transmission with possibility of ending control programs
WHO definitions

- "Control of disease", when applied to many communicable and some non-communicable conditions, is defined as ongoing operations or programs aimed at reducing the incidence and/or prevalence, or eliminating such conditions”.
- Elimination of disease is defined as the reduction of case transmission to a predetermined very low level; e.g., elimination of TB as a public health problem was defined by WHO in 1991 as a reduction of prevalence to a level below one case per million population.
- Eradication of disease is defined as achievement of a status whereby no further cases of a disease occur anywhere, and continued control measures are unnecessary.
- NOTE: bioterrorism issue makes the last clause problematic.

Eradication with vaccines
Examples of Smallpox (successful) and Polio (in progress)

Smallpox: The Virus

- Variola virus
- “Crowd disease” - requires a large, densely populated area in order to propagate extensively (BRR=4)

Smallpox Transmission

- Moderately contagious
- Transmitted through saliva or by direct contact with the lesions on the skin
- People with cough most infectious

Smallpox Virulence

- Variable CFR
 - Variola minor: <2%
 - Variola major: 20-70%
 - Fulminating smallpox: 99%
 - Among children <5 years of age with smallpox in the 18th century, 80% died in London, 98% in Berlin
- Major contributor to morbidity, especially blindness, and mortality in some nations

Symptoms

- After 12-14 day incubation period
 - Fever to 41°C
 - Chills
 - Back/Headaches
 - Nausea
 - 4 days later
 - Some relief
 - Rashes appear on face, chest, arms, back, and legs
- Next few days
 - Spots change to raised, blister-like pustules
- Nine days
 - Pustules split open, dry up, and form scabs that then fall off leaving obvious scars
Edward Jenner (1749 - 1823)
- Observation: milkmaids with past cowpox had fair skin, i.e., no pock scars
- In 1796, Jenner used cowpox fluid pustule from milkmaid Sarah Nelmes to inoculate 8-yr-old James Phipps via two half-inch arm incisions
- Six weeks later, Jenner variolated the child
- No evidence of smallpox infection ➔ child protected!!

Global eradication waited for nearly 2 centuries: Surveillance-containment
- Also known as ring-containment strategy
- Relies on excellent surveillance, especially during the seasonal transmission nadir
- Case-finding drives quarantine of communities with universal vaccination within the “ring”
- Success in driving incidence to zero with as low as 5% overall coverage (but >90% of persons in exposed regions)

Smallpox Eradication: last case, laboratory accident
- Last human smallpox event in UK, 1978
- Virology laboratory with very poor safety precautions caused airborne transmission to a closed space, a dark room, two flights away
 - A young, female hospital photographer was infected (died from smallpox)
 - The virology lab director committed suicide due to his self-professed guilt and shame

Smallpox Eradication: last natural case
- Last recorded “wild” case of smallpox
 - Somalia, Oct. 1977
 - 23 year old, Mr. Ali Maalin (survived)

Why were we successful with smallpox? - I
- Relatively low BRR
- Herd immunity feasible with relatively low overall coverage
- Excellent vaccine, lyophilized, stable
- Vaccinia incubation period 2 days less than variola
Why were we successful with smallpox? - II

- No animal reservoir
- Pock mark scars facilitated epidemiology
- One serotype, no mutations
- Seasonal transmission with natural nadir enabled surveillance-containment strategy

Why were we successful with smallpox? - III

- Obvious clinical syndrome
- Global collaboration despite “cold war”
- Strong national and international commitments of expertise and monetary support
- Motivated local populace

Global Polio Eradication Strategy

- High routine TOPV immunization coverage
- Supplementary immunization with national immunization days (NIDs)
- Effective clinical and environmental/lab surveillance
 - Acute Flaccid Paralysis
 - Wild-type virus
 - Door-to-door “mopping up” campaigns

Warm Springs, GA: Polio Museum
Polio Eradication by 2005?

- Peak incidence was in the 1950s with tens of thousands of cases each summer, especially in North America and Europe.
- Last case in United States in 1979 among religious objectors to vaccination.
- Last case in Western Hemisphere in 1991 until DR/Haiti vaccine-related cases in 2000.
- Western Hemisphere certified polio free in 1994, still true for wild type strains.
- Goal of global eradication goal by 2000 failed, but still anticipated in 2005 or so.

Polio Eradication Status - I

- 7 endemic, 190 polio-free countries or territories.
- Vaccines via EPI (WHO Expanded Program on Immunizations).
- NIDs (National Immunization Days).
- Public private partnerships: national programs & international donors.
- Includes Rotary International, WHO, CDC.
- Intensive surveillance, both clinical and laboratory.
- India, Bangladesh, Nigeria, Afghanistan, Ethiopia, Angola, Egypt.
- Acute flaccid paralysis and virology environmental surveillance.
- Huge global polio network of laboratories for both environmental surveillance and case ascertainment.

Polio Eradication Status - II

- # of endemic countries at an all-time low in 2002, but actual number of cases is ≈ 4x higher than 2001.
- Due to greatly increased number of cases in India and Nigeria.
- 9 states w/in 3 countries (incl. Pakistan) responsible for >90% of 2002 cases.
- 1005 of 1878 2002 global cases (66%) in India, northern state of Uttar Pradesh with a pop. ≈ 173M.

Polio Eradication Status - III

- The remaining polio burden caused by failure to vaccinate at-risk children both in routine and supplementary immunization activities, as judged by surveillance and program evaluations.
- Managerial, operational, and political barriers will lead to continued polio transmission in the 2003-04 time period.
- Global eradication by 2005 will occur only if these barriers are addressed and overcome.

Remarkable Polio Eradication Milestones

- Polio genome sequenced.
- Mass vaccination on a scale hitherto unknown.
- 76 million children immunized in 17 West/Central African countries in "synchronized" NIDs in 2000.
- 152 million children immunized in India in just a single month, December 2000.
- Largest coordinated network of public health laboratories in world history.
Why will we be successful with polio? - I

- Relatively low BRR
- Herd immunity feasible with relatively low overall coverage
- Excellent trivalent vaccine, oral, stable if frozen
- No global viral variation of immunological importance within each of the three types
- No animal reservoirs

Why will we be successful with polio? - II

- Obvious clinical syndrome can be detected as a “tip of the iceberg,” permitting AFP surveillance
- 90% of cases are asymptomatic, but environmental virology surveillance works well
- Global collaboration despite cold war (to 1989) and subsequent war/civil strife in target countries like Angola, Sudan, Congo, Somalia, Rwanda, Uganda, Cambodia
- Strong national and international commitments of expertise and monetary resources
 - Public-private partnerships with Rotary International
 - Motivated local populace

Elimination with vaccines and environmental control

Measles, Dengue, and Malaria

Measles Elimination

- One of the most infectious IDs with BRR>30
- Measles causes ≈800,000 deaths yearly, the largest single cause of childhood vaccine-preventable deaths
- 5th cause of death worldwide in children <5 years
- From 1997-02, all confirmed measles cases in the USA (<1000 cases) are documented or likely importations from measles-endemic countries
 - i.e., no current autochthonous transmission in the USA
- Goal of measles-free Western Hemisphere is in sight
- Measles vaccine is safe, effective, and cheap
 - $0.30 per dose incl. sterile needle, syringe, & disposal

Dengue Virus

- A flavivirus with 4 serotypes
- Can cause shock and hemorrhagic fever
- Transmitted by a peridomestic breeder
 - Aedes aegypti
 - Aedes albopictus
- Control depends on the reduction of the vector
 - Education and behavior change
 - Sanitation, Breeding site reduction, Insecticides
- May have vaccine w/in 10 yrs

Early “Ae. aegypti Eradication Campaigns” Promising

- In 1930s-1950s, adequate local and external funding for personnel, equipment and insecticides
- Emphasis on source reduction
- Effective residual insecticide (DDT for many yrs)
- Centralized, vertically-structured programs with military-type organization, strict supervision, high level of discipline
Resurgence of Dengue

- Cut-backs in control programs
- Global warming and expanding geographic distribution
- Increased epidemic activity with higher population densities, often poor sanitation
- DSS and DHF increased

Aedes aegypti Distribution in the Americas

Emergence of Dengue/DHF in the Americas

Dengue/DHF in the US

Note: Substantial theoretical risk in southeast USA, especially Florida
Hemispheric eradication of *Aedes aegypti* is not realistic

- Problem greater than during previous campaign
- Insufficient resources
- Resistance to vertical disease control programs and use of insecticides
- Lack of effective insecticides
- Low priority, lack of sustainability
- Introduction of *Aedes albopictus*

Malaria

- Parasitic disease transmitted by Anopheline mosquitoes
- One of the major causes of morbidity and mortality worldwide, with 300M. new cases/year
 - Endemic throughout most of the tropical/subtropical world (91 countries)
 - 2M. deaths/year, most in children
 - Significant threat to travelers
 - Endemic in the US until the 1940s

The Parasite, *Plasmodium spp.*

- *P. falciparum*
- *P. vivax*
- *P. malariae*
- *P. ovale*

Preventive Measures

- Elimination or reduction of impounded water
- Use of residual insecticide
- Use of screens, bed nets, insect repellants
- Prompt diagnosis and effective treatment
- Chemoprophylaxis with antimalarials to travelers to endemic areas

Early “Eradication” Efforts - I

- Before the 1940s: Organized malaria control in some countries/areas, chiefly through land reclamation, larviciding
- 1941-1945: Malaria control in USA considered as part of the war effort
- 1945-1955: Use of chloroquine and DDT
- Large-scale control globally countries
- 1953: Eradication of malaria in Cyprus

Early “Eradication” Efforts - II

- 1955: WHO recommended the policy of malaria eradication
- 1956-1970s: Malaria eradication programs
 - Lebanon (1963), Palestine (~1965), Jordan (1970), Qatar (~1970), Libya (1973), Bahrain (1979), Tunisia (1979), Kuwait (no indigenous malaria; vector present from 1981)
 - 1970: Interruption of transmission of *P. falciparum* in Iraq, Syria, Morocco
- 1970s: Containment of malaria in Iran, Pakistan, Afghanistan, Egypt, Saudi Arabia
Stagnation in Control Efforts Leads to Reemergence

- **1980s-mid 1990s:** Setbacks in countries with internal problems: Afghanistan, Iraq, Sudan, Djibouti, Somalia, Yemen
- **1991-1993:** Formulation, adoption and dissemination of the revised Global strategy for malaria control
- **1991 - now:** Malaria Eradication Program in Oman, but attitude is focused on regional elimination when feasible, control where BRR is high (hyper- or holo-endemic transmission status)

Factors Contributing to the Resurgence of Malaria - I

- Rapid spread of resistance of malaria parasites to chloroquine and other antimalarial drugs
- Frequent armed conflicts and civil unrest in many countries, with refugees and marching armies as source of infection, collapse of control programs
- Migration (for reasons of agriculture, commerce, and trade) of nonimmune populations from nonmalarious and usually high to low parts of the same country where transmission is high

Factors Contributing to the Resurgence of Malaria - II

- Changing rainfall patterns as well as water development projects such as dams and irrigation schemes, which create new mosquito breeding sites
- Adverse socioeconomic conditions leading to a much reduced health budget and gross inadequacy of funds for drugs
- High birth rates leading to a rapid increase in the susceptible population under 5 years of age
- Changes in the behavior of the vectors, particularly in biting habits, from indoor to outdoor biters
- Global warming with increased vector lifespan and expansion of optimal habitats

WHO targeted diseases For eradication in early 21st century

- Dracunculiasis (guinea worm)
- Poliomyelitis
- Leprosy
- Lymphatic Filariasis
- Neonatal tetanus
- Chagas disease
- Iodine deficiency disorders

Control and Prevention: Summary I

- Vaccines
- Environmental and vector control
- Physical and chemical barriers
- Health education and behavior change
- Over 30 examples
- West Nile, EEE, SLE, WEE, Dengue, Malaria
- Condoms, Mosquito repellents
- HIV/STD control, smoking cessation

Control and Prevention: Summary II

- Case finding and treatment
- Isolation and quarantine
- Directly observed therapy (DOT)
- Water, Sanitation, Hygiene
- Housing improvements (crowding)
- Excellent primary and preventive health care
 - e.g., Obstetrics, Geriatrics, Pediatrics

- TB, STD
- Smallpox, SARS
- TB, HIV, STD
- Diarrheal, parasitic, nosocomial
- TB, meningococcus, pneumococcus
- Maternal and neonatal sepsis and “TORCH” infections, pneumonia and influenza in the elderly, childhood infection prevention or prompt treatment
Complacency is inappropriate, but it is worth celebrating successes!!

*For 100,000 population per year.