Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production.

Submitted by elbrown on Fri, 03/14/2014 - 9:16am

Title
Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production.

Publication Type
Journal Article

Year of Publication
2013

Authors

Corporate Authors
BIOLUPUS Network

Journal
PLoS Genet

Volume
9

Issue
2

Pagination
e1003222

Date Published
2013

ISSN
1553-7404

Keywords
African Americans, Alleles, Antigens, Nuclear, Apoptosis, Autoantibodies, Chromosome Mapping, DEAD-box RNA Helicases, DNA-Binding Proteins, European Continental Ancestry Group, Genetic Predisposition to Disease, Genome, Human, Haplotypes, Humans, Inflammation, Lupus Erythematosus, Systemic, Polymorphism, Single Nucleotide, Protein Binding

Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22-24 (LOD=6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ~1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [P(meta) = 5.20×10(-14); odds ratio, 95% confidence interval = 0.82 (0.78-0.87)], and two missense variants, rs1990760 (Ala946Thr) [P(meta) = 3.08×10(-7); 0.88 (0.84-0.93)] and
rs10930046 (Arg460His) \(P(\text{dom}) = 1.16 \times 10^{-8}; \\
0.70 (0.62-0.79) \). Both missense variants
promoted dramatic phenotypic changes in
apoptosis and inflammation-related gene
expression. We experimentally validated function
of the intronic SNP by DNA electrophoresis,
protein identification, and in vitro protein binding
assays. DNA carrying the intronic risk allele
rs13023380 showed reduced binding efficiency to
a cellular protein complex including nucleolin and
lupus autoantigen Ku70/80, and showed reduced
transcriptional activity in vivo. Thus, in SLE
patients, genetic susceptibility could create a
biochemical imbalance that dysregulates
nucleolin, Ku70/80, or other nucleic acid
regulatory proteins. This could promote antibody
hypermation and auto-antibody generation,
further destabilizing the cellular network.
Together with molecular modeling, our results
establish a distinct role for IFIH1 in apoptosis,
inflammation, and autoantibody production, and
explain the molecular basis of these three risk
alleles for SLE pathogenesis.
Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production.