Persistent rhinitis and epithelial remodeling induced by cyclic ozone exposure in the nasal airways of infant monkeys.

Submitted by epostlethwait on Mon, 08/19/2013 - 12:59pm

Title
Persistent rhinitis and epithelial remodeling induced by cyclic ozone exposure in the nasal airways of infant monkeys.

Publication Type
Journal Article

Year of Publication
2011

Authors
Carey, SA, Ballinger, CA, Plopper, CG, McDonald, RJ, Bartolucci, AA, Postlethwait, EM, Harkema, JR

Journal
Am J Physiol Lung Cell Mol Physiol

Volume
300

Issue
2

Pagination
L242-54

Date Published
2011 Feb

ISSN
1522-1504

Keywords
Air Pollutants, Animals, Antioxidants, Child, Disease Models, Animal, Gene Expression, Glutamate-Cysteine Ligase, Glutathione, Humans, Macaca mulatta, Male, Metaplasia, Nasal Mucosa, Neutrophils, Ozone, Rhinitis, RNA, Messenger

Abstract
Children chronically exposed to high levels of ozone (O3), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O3 [0.5 parts per million (ppm), 8 h/day; "1-cycle"] or filtered air (FA) or 11 biweekly cycles of O3 (FA days 1-9; 0.5 ppm, 8 h/day on days 10-14; "11-cycle"). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH2), and uric acid (UA) concentration. Eleven-cycle O3 induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O3 also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia
Persistent rhinitis and epithelial remodeling induced by cyclic ozone exposure in the nasal airways of infant monkeys.

Published on UAB School of Public Health (http://www.soph.uab.edu)

was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments.

DOI
10.1152/ajplung.00177.2010

Alternate Journal

PubMed ID
21131400

PubMed Central ID
PMC3043815

Grant List
P01 ES011617 / ES / NIEHS NIH HHS / United States
P01-ES-011617 / ES / NIEHS NIH HHS / United States