A Genomic Imprinting Test for Ordinal Traits in Pedigree Data

Rui Feng1* and Heping Zhang2

1Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
2Department of Epidemiology and Public Health, Yale University, New Haven, Connecticut

Genomic imprinting can lead maternally and paternally derived alleles with identical nucleotide sequences to function differently and has been found to affect the complex inheritance of a variety of human disorders. Statistical methods that differentiate the parent-of-origin effects on human diseases are available for binary traits and continuous traits. However, numerous common diseases are measured on discrete ordinal scales. Imprinting may also contribute to the complex genetic basis of these traits. In a previous study, we proposed a latent variable model and developed computationally efficient score statistic to test linkage of ordinal traits for any size pedigree while adjusting for non-genetic covariates. In this study, we extend the latent variable model to incorporate parent-of-origin information and further develop a score statistic for testing the imprinting effect in linkage analysis. We evaluated the properties of our test statistic using simulations. We then applied our method to the Collaborative Study on the Genetics of Alcoholism and found a novel locus on chromosome 18 that shows a strong signal for imprinting. In addition, we identified two loci on chromosomes 3 and 4 significantly \((p < 0.0001)\) linked with alcoholism. Genet. Epidemiol. 32:132–142, 2008. © 2007 Wiley-Liss, Inc.

INTRODUCTION

Genomic imprinting can lead maternally and paternally derived alleles with identical nucleotide sequences to function differently. For example, the expression of one set of alleles can be completely or partially silenced if it is derived from the mother and not from the father because of differential epigenetic marks (such as methylation and acetylation) imposed on male and female gametes [Adams et al., 2000]. Imprinting plays a critical role in gene expression, mammalian development, and human disease [Everman and Cassidy, 2000]. In the past decade a wide range of disorders, including neonatal diabetes, Silver-Russell syndrome, Beckwith Wiedemann syndrome, Angelman Syndrome, Prader-Willi Syndrome, Alzheimer’s disease, autism, diabetes, and schizophrenia, were found to be related to maternal imprinting on chromosomes 6, 7, 11, 14, and 15 [Huxtable et al., 2000; Francks et al., 2003; Bartlett and Vieland, 2005; Luedi et al., 2005; Bassett et al., 2006]. Beckwith-Wiedemann syndrome, a developmental disorder, is associated with two maternally expressed growth-regulatory genes on chromosome 11 [Rump et al., 2005]. An allele on a paternally expressed region at chromosome 6 is responsible for transient neonatal diabetes [Temple and Shield, 2002; Rump et al., 2005].

Statistical methods that can differentiate the parent-of-origin effects on human diseases are available for binary traits [Weinberg et al., 1998; Weinberg, 1999; Strauch et al., 2000] and continuous traits [Knapp and Strauch, 2004; Shete et al., 2003; Whittaker et al., 2003]. However, numerous diseases, such as asthma, cancer, and most psychiatric disorders and neurodegenerations, are measured on discrete ordinal scales. Genomic imprinting may also contribute to the complex genetic basis of these traits [Steinke et al., 2003]. Furthermore, most methods to test imprinting are limited to sibs, relative pairs, or case-parent triads [Weinberg, 1999; Hanson et al., 2001; Karason et al., 2003; Knapp and Strauch, 2004; Vincent et al., 2006]. Using large pedigree information directly can lead to more efficient and more powerful methods than dividing pedigrees into sibs [Wijsman and Amos, 1997; Shete et al., 2003], but only a few can be applied for extended pedigrees [Strauch et al., 2000; Shete et al., 2003].

In a previous study, we developed a latent variable model and used a likelihood ratio test to map genes for ordinal traits from pedigree data that showed increased power compared with methods using dichotomized traits [Feng et al., 2004]. However, computation of the likelihood ratio in relatively large pedigrees is overwhelming and often infeasible. In this study, we extend the model to accommodate different parent-of-origin effects. To alleviate the computation burden and address the complication introduced by imprinting in general pedigree data, we use a score statistic based on the identity by
The score test improves the speed dramatically. Although we expect the likelihood ratio test to be more powerful than the score test, computational complexity makes the likelihood ratio statistic difficult to obtain and is the reason why the score test outperformed the likelihood ratio test numerically in our previous study [Feng and Zhang, 2007]. After presenting the score test for detecting imprinting, we evaluate the method using both simulations and an application to data from the Collaborative Study on the Genetics of Alcoholism (COGA).

METHOD

The regression models for linkage analysis establish the association of a trait and the inheritance pattern at genetic markers. The inheritance pattern of a pedigree at a locus is inferred from the observed marker information through the so-called inheritance vectors [Kruglyak et al., 1996]. In this section, we first explain the parent-of-origin specific inheritance vectors and define separate latent variables depending on the parental origin of alleles. We then introduce our regression model that links the ordinal trait with the genetic susceptibility transmitted according to the inferred pattern at a putative locus. Finally, based on the regression model, we derive a computationally efficient score statistic to detect imprinting.

PARENT-OF-ORIGIN SPECIFIC INHERITANCE VECTORS AND LATENT VARIABLES

For a given pedigree, the inheritance vector of non-founders (subjects whose parents are included in the pedigree) at a given locus q describes the ancestral origin of the DNA inherited by every non-founder at that locus [Lander and Green, 1987]. For instance, in a nuclear family with two parents and n siblings, we may arbitrarily index the two alleles of the father at q as 1 and 2 and similarly two alleles of the mother as 3 and 4. For the jth sibling, define $v_{pj} = 1$ or 2 according to which paternal allele is transmitted and $v_{mj} = 3$ or 4 according to which maternal allele is transmitted. Then the inheritance vector of the n siblings, $v(q) = (v_{p1}, v_{m1}, v_{p2}, v_{m2}, \ldots, v_{pn}, v_{mn})^T$, completely specifies which of the four distinct paternal and maternal alleles are transmitted to every sibling. For a more complex pedigree with f founders and n non-founders, we can index the alleles of the f founders as $(1, 2), (3, 4), (5, 6), \ldots, (2f-1, 2f)$ and define the inheritance vector for the n non-founders similarly.

For the ith family, we assume there exist two types of latent random variables U_{i}^{p} and U_{i}^{m} that represent, respectively, (a) the genetic susceptibility at a marker of interest and (b) the residual genetic or environmental factors in a family that are unobserved or difficult to assess through the observed data.

U_{i}^{p} depends on the inheritance vector in the pedigree as follows. Let $U_{i}^{p1}, \ldots, U_{i}^{p2f}$ be the genetic susceptibility associated with the $2f$ alleles at a disease susceptibility locus (DSL) on $2f$ pairs of chromosomes of all f founders in the ith family. In a simple pedigree with two founders, U_{i}^{p1} and U_{i}^{p2} represent the genetic susceptibility associated with the two alleles of the father at the DSL and U_{i}^{p3} and U_{i}^{p4} represent the genetic susceptibility associated with the two alleles of the mother at the DSL. For the jth founder in the ith family, his or her latent variables are $U_{i}^{p,j1}$ and $U_{i}^{p,j2}$, where $2j-1$ and $2j-2$ are arbitrarily labeled, reflecting the genetic susceptibility from two alleles with unknown parental origins. For the jth non-founder in the ith family, his or her latent variables are $U_{i}^{p,j}$ and $U_{i}^{m,j}$ reflecting the genetic susceptibility due to the maternally derived allele and the paternally derived allele at the locus, respectively. We use $U_{i}^{p,j}$ and $U_{i}^{m,j}$ to denote the genetic susceptibility due to the paternal and maternal alleles for each individual, respectively, i.e., $U_{i}^{p,j} = U_{i}^{p,j1} + U_{i}^{p,j2}$ and $U_{i}^{m,j} = U_{i}^{m,j1} + U_{i}^{m,j2}$ for non-founders.

A PROPORTIONAL-ODDS MODEL FOR ORDINAL TRAITS

We consider a trait Y taking an ordinal value from 0, 1, \ldots, $K(\geq 1)$. Let x be a p-vector of covariates that is also available for every study subject. All U_{i}^{p}s of the founders and the U_{i}^{m}s are assumed to be independently and identically distributed across families. Conditional on all latent variables, denoted by U_{i}^{p} and inheritance vectors v within the ith family, the traits of all non-founders are independent and follow the distribution

$$\log it(P(Y_{i} \leq k|U_{i}^{p}, v)) = x^{T}\beta + \alpha_{k} + U_{i}^{p,y_{ij}} + U_{i}^{m,y_{ij}}$$

$$+ U_{i}^{p}, \text{for } i = 1, \ldots, n, j = 1, \ldots, n_{i}, k = 0, 1, \ldots, K-1,$$

where n is the total number of pedigrees, n_{i} is the number of individuals in the ith family, β is a p-vector of parameters reflecting the covariate effects on the trait, and α_{k}s are the trait-level-dependent intercepts reflecting the differences between cumulative probabilities $P(Y \leq k)$. We must have $\alpha_{0} \leq \alpha_{1} \leq \ldots \leq \alpha_{K-1}$ so that the category probabilities $P(Y_{i} = k)$ are non-negative [McCullagh and Nelder, 1989]. Parameters γ_{i} and γ_{m} indicate two corresponding genetic effects due to the paternal and maternal alleles, and γ_{e} indicates the contribution.
due to non-observed shared genetic and non-genetic factors.

Here, we consider the additive genetic susceptibility due to the gene at DSL; the dominant or recessive susceptibility can be incorporated as well. If the allele frequencies at DSL are the same for both male and female founders in the population, we can assume standardized mean and variance for \(U_i \), i.e., \(E[U_{g_p,j}] = E[U_{g_m,j}] = 0 \) and \(\text{Var}[U_{g_p,j}] = \text{Var}[U_{g_m,j}] = 1 \) for \(j = 1, 2, \ldots, 2f \), without loss of generality. We also assume that \(U_i \)'s follow the standard normal distribution.

SCORE TEST FOR IMPRINTING

Let \(\gamma = (\gamma_p, \gamma_m)' \) and \(\omega = (\delta, \gamma_p, \ldots, \gamma_{K-1}, \gamma_m) \). We test the null hypothesis that there is no linkage and no imprinting, i.e., \(\gamma_p \) (paternal imprinting) = \(\gamma_m \) (maternal imprinting) = 0. Let \(S_p \) and \(S_m \) be the score functions for testing the paternal imprinting and maternal imprinting, respectively. We obtain the score vector regarding to \(\gamma \) as follows (see appendix for details):

\[
S = \left(S_p \quad S_m \right) = \left(\frac{\sum_{i=1}^{N} n_i \sum_{j=1}^{n_i} \int P_i^j (0,0)P_i^j (0,0)dF(U_i)}{2 \int P_i^j (0,0)dF(U_i)} \right) \quad (2)
\]

where

\[
P_i^j (0,0) = \begin{cases} I(\gamma_p^j = r, Y_j = t) \left(1 - \pi_{r,j}^i (0,0) - \pi_{r-1,j}^i (0,0) \right) \\ \left(1 - \pi_{r,j}^i (0,0) - \pi_{r-1,j}^i (0,0) \right), \quad \text{for } j \neq l \\ \end{cases}
\]

\[
P_i^j (0,0) = -I(\gamma_m^j = r) \left[\pi_{r,j}^i (0,0) \left(1 - \pi_{r,j}^i (0,0) \right) \right] + \pi_{r-1,j}^i (0,0) \left(1 - \pi_{r-1,j}^i (0,0) \right),
\]

\[
\pi_{r,j}^i (0,0) = \frac{\exp(x^j \beta + x_r + U_{g_p,j}^r)}{1 + \exp(x^j \beta + x_r + U_{g_p,j}^r)} \quad \text{for } r = 0, 1, \ldots, K-1, \quad \pi_{r,j}^i (0,0) = 0, \quad \pi_{K,j}^i (0,0) = 1.
\]

For \(\gamma_p \) is the cumulative distribution function of \(U_{g_p,j} \), and \(q_{g_p,j}^i \) and \(q_{g_m,j}^i \) are the number of paternal alleles and maternal alleles shared by the \(j \)th and \(l \)th individuals, respectively. The two elements of \(S_p \) and \(S_m \) can indicate the evidence for imprinting—paternal or maternal depending on whether \(S_p \) or \(S_m \) is greater.

The asymptotic variance of \(S \) under the null hypothesis can be calculated directly [Cox and Hinkley, 1974].

\[
S = I_{\gamma_p} - I_{\omega_0}I_{\omega_0}' I_{\gamma_p}'
\]

where \(I_{\gamma_p} = \sum_{i=1}^{N} \frac{(\gamma_p^j)'(\gamma_p^j)}{2 \int P_i^j (0,0)dF(U_i)} \), \(I_{\omega_0} = \sum_{i=1}^{N} \left(\frac{\omega_0^j}'(\omega_0^j) \right) \frac{1}{2 \int P_i^j (0,0)dF(U_i)} \), and the expectation is taking over the distribution of \(Y \).

Let \(S \) and \(I \) be the values of \(S \) and \(I \), respectively, calculated at the corresponding estimates \(\hat{\omega} \) under the null hypothesis. The score statistic then equals

\[
S = S_{\hat{\gamma}} = S^T \hat{I}^{-1} S
\]

for testing both linkage and imprinting.

Without differentiating the effects due to different parental origins, we let \(\gamma_0 = \gamma_p = \gamma_m \) in model (1) and the new model is logit\(P(Y_i^j \leq k|U_i, \gamma^j) = x^j \beta + x^j + (U_{g_p,j}^i + U_{g_m,j}^i) \gamma_0 + U_i \gamma_r, \) for \(i = 1, \ldots, n, \) \(j = 1, \ldots, n, \) \(k = 0, 1, \ldots, K - 1 \). The null hypothesis for testing evidence of linkage becomes \(\gamma_0 = 0 \). The score function in this setting is

\[
S = \sum_{i=1}^{N} n_i \sum_{j=1}^{n_i} \int \frac{P_i^j (0,0)}{2 \int P_i^j (0,0)dF(U_i)} dF(U_i)\hat{q}_{g_p,j}^i \quad (4)
\]

where \(\hat{q}_{g_p,j}^i \) is the expected number of general IBD alleles shared by the \(j \)th and \(l \)th members (without differentiating the parental origins) in the \(j \)th pedigree, given the marker information [Feng and Zhang, 2007]. The score statistic then equals \(S_0 = S^T I_0^{-1} S \), where \(S \) and \(I_0 \) are values of \(S \) and the asymptotic variance of \(S \), respectively, calculated at the corresponding estimates \(\hat{\omega} \) under the null hypothesis. Under the null hypothesis that there is no linkage, the asymptotic distribution of the score function \(S_0 \) is \(\chi_1^2 \) [Casella and Berger, 2002; Feng and Zhang, 2007].

The difference between two scores \(S_1 \) and \(S_0 \) indicates the extra contribution due to parent-of-origin effect and a thereore-defined score statistic, \(S_m = S_1 - S_0 \), will suggest evidence of imprinting, which follows \(\chi_1^2 \) asymptotically. The score statistic \(S_m \) is very computationally efficient and can test imprinting for any sized pedigrees while adjusting for non-genetic covariates.

SIMULATION

We performed a series of simulations to examine the empirical distribution of our score test statistics. First, we verified whether the empirical distribution of the test statistic is similar to the theoretical asymptotic distribution under the null hypothesis. Second, we examined the power of detecting imprinting when an imprinted gene is linked to markers.

Genet. Epidemiol. DOI 10.1002/gepi
EMPIRICAL DISTRIBUTION OF SCORE STATISTIC UNDER THE NULL HYPOTHESIS

The simulation was replicated 10,000 times, resulting in 10,000 data sets. For each data set, we generated 100 pedigrees with two parents and three offspring in each pedigree. A latent variable \(U_i \) was generated from \(N(0,1) \) that is shared by all family members, and a random noise \(\epsilon_i \) was also generated from \(N(0,1) \) for each individual.

For each founder in a pedigree, 20 highly polymorphic markers with 10 equally likely alleles [Speer et al., 1995], spaced 5 cM apart, were generated on one chromosome. Recombination fractions were converted to map distances without interference and there was no linkage disequilibrium among markers. After the genotypes were generated for the founders, the genotypes of non-founders were generated subsequently based on the recombination fractions.

We considered two possible scenarios under the null hypothesis: (1) no linkage (and thus no imprinting effect) and (2) a linkage but no imprinting. For the first scenario, all markers were generated independently. A liability variable \(Z_{ij} \) for the \(j \)th person in the \(i \)th family was defined as \(U_i + \epsilon_i \). And for the second scenario, we assumed a di-allelic disease locus between the 10th and 11th markers and the disease-causing allele, \(D \), with frequency \(P = 0.3 \). The genetic contributions \(U_g \) of allele \(D \) and \(d \) in founders were set equal to 1 and -1, respectively. The genetic contributions from the same alleles were the same regardless of parental origin. The liability variable \(Z_{ij} \) was defined as \(U_i + 2(N_D - 1) + \epsilon_i \), where \(N_D \) is the number of allele \(D \) at the disease locus for each individual. For both settings the ordinal response, \(Y_i \), equaled 0 if \(Z < 0 \), 1 if \(0 \leq Z < 1 \), or 2 if \(Z \geq 1 \).

Fig. 1 and 2 give the QQ plots of the empirical score distribution at a locus and the asymptotic score distribution \(\chi^2 \). The nearly straight lines in both figures show that the empirical distribution approximates the theoretical distribution reasonably well for a modest sample size (100 pedigrees and a total of 500 subjects). The line in Fig. 1 has a slight departure from the diagonal but suggests non-inflated type I errors with a slightly smaller slope. At the nominal level of 0.05, the empirical type I errors are 0.055 and 0.044, respectively, for the two experiments.

As phenotype and genotypes are often missing from family data, we examined type I errors when the data are missing. We simulated 10,000 datasets under three scenarios: 10% of parental genotypes are randomly missing, 20% of parental genotypes are randomly missing, and both phenotype and genotypes of one randomly chosen parent in each family are missing. The empirical score distributions are also close to the asymptotic distribution for the different scenarios. When there is no linkage and no imprinting, the type I errors are 0.055, 0.055, and 0.061 for three different scenarios at the nominal level of 0.05, respectively; when there is linkage but no imprinting, the type I errors are 0.032, 0.032, and 0.049, respectively. If all the genotypes of both parents in a family are missing, we cannot infer the parental origin of the offspring’s alleles and thus the family is not informative for testing imprinting. So when a small proportion of genotypes of parents are missing, type I error rates are reserved; especially for the test of imprinting in the presence of linkage, the type I errors are slightly conservative (the empirical confidence intervals are \((0.029, 0.035)\) and \((0.029, 0.035)\) based on \(100 \times 10,000\) samples). But when both phenotype and genotypes of at least one parent are missing, type I error rates are slightly inflated. How to adjust type I errors for missing data deserves further investigations.
POWER OF SCORE TEST TO DETECT IMPRINTING UNDER ALTERNATIVE HYPOTHESIS

Data sets were simulated similarly to the scenario of linkage but no imprinting in the previous section. However, the genetic contributions from the paternal and maternal alleles with the same DNA composition are different. We first considered complete imprinting in which one parental allele is completely silenced. Let a and $-a$ denote the genetic contributions from paternally derived alleles D and d, respectively; but there is no genetic contribution from maternally derived alleles, i.e., maternal imprinting. The liability variable Z_i^j was defined as $U_i^j + (2n_D - 1)a + e_i^j$, where n_D is the number of paternal allele D. The ordinal response, Y_i, equaled 0 if $Z < 0$, 1 if $0 \leq Z < 1$, or 2 if $Z \geq 1$. If we assume equal allele frequencies for both genders and allele D has a frequency of p, the genetic heritability, defined as proportion of phenotype variance explained by the major genetic variance, is $\frac{4p(1-p)a^2}{4p(1-p)a^2 + \text{Var}(U_i) + \text{Var}(e)}$. We fixed the total variance at 2, let $\text{Var}(U_i) = \text{Var}(e)$, and let heritability vary from 0.05 to 0.4 at the 0.05 interval. For each set of parameters and two different numbers of pedigrees (100 and 200), we simulated 1,000 datasets. Table II displays the empirical power, defined as the proportion of trials with score statistics larger than $\chi^2_{1/2}$ at the 10th or 11th marker (these are flanking markers for the true locus). A significance level of 0.0025 is the Bonferroni-adjusted significance level for 20 markers.

We also repeated the experiments in the presence of partial imprinting, where alleles from both parents are active but differ in effect depending on origin. The genetic contributions from paternally derived alleles D and d are a and $-a$, respectively; but the genetic contribution from both maternally derived alleles D and d are $a/2$ and $-a/2$.

The liability variable Z_i^j was $U_i^j + (2n_D - 1)a + (2n_D - 1)a/2 + e_i^j$, where n_D and n_D are the number of paternal and maternal allele D, respectively. The genetic heritability from both parents, defined as proportion of phenotype variance explained by the major genetic variance, is then $\frac{5p(1-p)a^2}{5p(1-p)a^2 + \text{Var}(U_i) + \text{Var}(e)}$. We fixed the total variance at 2, let $\text{Var}(U_i) = \text{Var}(e)$, and let heritability vary from 0.05 to 0.4 at the 0.05 interval.

In Tables I and II, the power of detecting imprinting increases with the increased difference between the contributions from paternal and maternal alleles as we expected. It is interesting that the power of detecting imprinting is very low for low heritability under complete imprinting, but improves greatly under partial imprinting. For both scenarios, the power of detecting linkage increases with the increased total heritability and the gain is faster with less imprinting signal or decreased difference between parental and maternal alleles. With the same heritability, the power of detecting linkage is higher with partial imprinting than with the complete imprinting. This is consistent with previous findings that imprinting can strongly reduce the power to detect linkage when using classic approaches [Hanson et al., 2001; Shete et al., 2003].

APPLICATION TO ALCOHOLISM STUDY

BACKGROUND

COGA aims to identify genes that affect the alcohol dependence and related phenotypes [Edenberg, 2002]. The COGA data set includes 143 families with a total of 1,614 members (including non-genotyped founders). Family size varies from five to 32 members and generations range from two to

TABLE I. Power of detecting linkage and imprinting under complete imprinting

<table>
<thead>
<tr>
<th>Additive h^2</th>
<th>$\alpha = 0.5$</th>
<th>$\alpha = 0.0025$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 (0.05)</td>
<td>0.094</td>
<td>0.005</td>
<td>0.212</td>
<td>0.048</td>
<td>0.222</td>
<td>0.049</td>
<td>0.372</td>
<td>0.120</td>
</tr>
<tr>
<td>0.10 (0.10)</td>
<td>0.167</td>
<td>0.016</td>
<td>0.288</td>
<td>0.071</td>
<td>0.630</td>
<td>0.289</td>
<td>0.840</td>
<td>0.559</td>
</tr>
<tr>
<td>0.15 (0.15)</td>
<td>0.321</td>
<td>0.061</td>
<td>0.413</td>
<td>0.135</td>
<td>0.959</td>
<td>0.674</td>
<td>0.959</td>
<td>0.799</td>
</tr>
<tr>
<td>0.20 (0.20)</td>
<td>0.526</td>
<td>0.146</td>
<td>0.607</td>
<td>0.282</td>
<td>0.995</td>
<td>0.963</td>
<td>0.995</td>
<td>0.955</td>
</tr>
<tr>
<td>0.25 (0.25)</td>
<td>0.730</td>
<td>0.296</td>
<td>0.782</td>
<td>0.459</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.30 (0.30)</td>
<td>0.883</td>
<td>0.520</td>
<td>0.925</td>
<td>0.689</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.35 (0.35)</td>
<td>0.956</td>
<td>0.756</td>
<td>0.982</td>
<td>0.874</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>0.40 (0.40)</td>
<td>0.995</td>
<td>0.903</td>
<td>0.998</td>
<td>0.951</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

aDifference between contributions from paternal and maternal alleles.

Genet. Epidemiol. DOI 10.1002/gepi
five. Among all individuals, 1,388 members have some discrete and quantitative phenotypes, covariates, and microsatellite genotypes for a 10 cM genome scan. The total number of genotyped microsatellite markers is 315.

Among the multiple alcohol-related phenotypes available, the phenotype ALDX1 is of particular interest. ALDX1 is defined as the severity of the alcohol dependence according to the DSM-III-R [1987] criteria, based on thorough evaluation of various symptoms including craving, binge eating, desire to stop drinking, giving up activities, blackouts due to drinking, physical health problems, and emotional/psychological problems from drinking. Various linkage analyses for alcohol dependence have been performed using the microsatellite genotypes either in the whole genome [Wiener et al., 2005; Williams et al., 2005; Zhu et al., 2005] or on selected chromosomes [Bartlett and Vieland, 2005; Dunn et al., 2005; Martin et al., 2005; Zhao, 2005]. Besides regular linkage evidence without differentiation of parent-of-origin effect [see Wilcox et al., 2005 for summaries], paternal imprinting (i.e., maternal expression) was consistently found at regions linked to alcoholism on chromosomes 10, 12, and 21 as well as maternal imprinting at a locus on chromosome 11 by study groups at Genetic Workshop 14 [Strauch and Baur, 2005]. However, all previous analyses treated ALDX1 as a binary outcome, whereas the original ALDX1 is a four-level ordinal-scaled variable (pure unaffected, never drunk alcohol, unaffected with some symptoms, and affected).

DATA ANALYSIS

Genotyping errors can lead to misleading inferences about inheritance patterns in pedigrees and may greatly affect the results of linkage analysis. Before the analysis we used Merlin [Abecasis et al., 2002] to detect genotype errors and coded them as missing. The error detection method has better accuracy for large pedigrees.

We adjusted our genome-wide analysis for age at interview and sex, which were found significant in predicting the alcohol-related phenotype. The appropriate adjustment was found to increase power of detecting linkage relative to the unadjusted analyses [Doan et al., 2005].

In the first step, we used Merlin to calculate the extended IBD distribution of all the pedigrees. Merlin can not calculate the IBD for nine extended pedigrees because of the memory limits. Thus, we broke each of the 5 largest pedigrees into two smaller pedigrees and removed three–eight uninformative members in the left pedigrees so that the largest bit (a measure of the pedigree complexity, which equals twice the number of non-founders minus the number of founders) of a pedigree is 24. The final dataset for our analyses included 148 families with a total of 1,593 members. All the individuals including those with missing phenotypes or genotypes were included to derive the maximum inheritance information.

In the second step, the individuals with missing response or covariates (age at interview and sex) were excluded. We excluded the 29 subjects who had never drunk alcohol due to the concern that they might not have been exposed to alcohol as were the others. The trait (Y) values are 0, 1, and 2 for purely unaffected, unaffected with some symptoms, and affected, respectively. We fitted the data using our model and performed the score test for imprinting.

RESULTS

Fig. 3 displays the LOD value, defined as $S_{\text{im}}/2\ln 10$, along the genome. The solid curve is the LOD from the score test of linkage and the dashed curve is from the test of imprinting.

| TABLE II. Power of detecting linkage and imprinting under partial imprinting |
|---|---|---|---|---|---|---|---|---|
| Additive h^2 | $\alpha = 0.5$ | $\alpha = .0025$ |
| N = 100 | N = 200 |
| 0.05 (0.03) | 0.127 | 0.011 | 0.250 | 0.060 | 0.207 | 0.024 | 0.308 | 0.088 |
| 0.10 (0.06) | 0.355 | 0.067 | 0.437 | 0.160 | 0.564 | 0.173 | 0.659 | 0.314 |
| 0.15 (0.09) | 0.623 | 0.222 | 0.691 | 0.346 | 0.875 | 0.510 | 0.900 | 0.678 |
| 0.20 (0.12) | 0.835 | 0.445 | 0.897 | 0.621 | 0.995 | 0.865 | 0.991 | 0.918 |
| 0.25 (0.15) | 0.961 | 0.720 | 0.967 | 0.851 | 1.000 | 0.985 | 1.000 | 0.989 |
| 0.30 (0.18) | 0.992 | 0.902 | 0.994 | 0.950 | 1.000 | 1.000 | 1.000 | 1.000 |
| 0.35 (0.21) | 1.000 | 0.972 | 1.000 | 0.989 | 1.000 | 1.000 | 1.000 | 1.000 |
| 0.40 (0.24) | 1.000 | 0.993 | 1.000 | 0.994 | 1.000 | 1.000 | 1.000 | 1.000 |

*Difference between contributions from paternal and maternal alleles.
The highest peak from the score test for imprinting is near the marker D18A535 on chromosome 18 (LOD = 2.40, position 55 cM, \(p = 0.0009 \)). \(S_p \) and \(S_m \) components in the \(S_1 \) that measure the effects from parental and maternal alleles are 29.615442 and \(-1.892955\), respectively, showing a strong paternal effect.
We proposed a latent variable, proportional odds model to differentiate the parent-of-origin effect in the linkage analysis for ordinal traits. We developed a score statistic to take advantages of the IBD sharing information between relatives, which greatly alleviates the computational burden for large pedigrees. Our method was implemented in a C program and will be available from http://peace.med.yale.edu/pub/LOT. Because binary traits are only special ordinal traits with two categories, our method can be readily applied for binary traits.

Using the proposed model, we scanned the microsatellite markers on 22 autosomes for alcohol dependence in the COGA dataset. Our score test suggests evidence of maternal imprinting at a novel region near D18A535 on chromosome 18.

Our method depends on and hence is limited by existing methods or software such as Merlin and Simwalk2 [Sobel and Lange, 1996] to compute the parent-of-origin-specific IBD. Simwalk can calculate IBD for large pedigrees using the Markov chain Monte Carlo algorithm but requires intensive computation time. For example, it may take months to complete the multipoint IBD computation according to the previous experiments [Kim et al., 2005; Wilcox et al., 2005]. Therefore, we used Merlin for the parent-of-origin–specific allele-sharing IBD calculation even though dividing or trimming large pedigrees may lose some potentially useful inheritance information. Further investigation is warranted upon the availability of updated algorithm and software for calculating parent-of-origin specific IBD probabilities.

ACKNOWLEDGMENTS

Data were provided by the Collaborative Study on the Genetics of Alcoholism (U10AA008401). The authors thank Drs. Raymond Crowe and Jean MacCluer for facilitating the use of the COGA data. The authors would also like to thank Ms. Judith Dickson for reviewing the manuscript.

REFERENCES

APPENDIX

Let $\delta_p = \text{sign}(\gamma_p)\gamma_p^2$ and $\delta_m = \text{sign}(\gamma_m)\gamma_m^2$ in (1). Then $\gamma_p = \text{sign}(\delta_p)\sqrt{|\delta_p|}$, $\gamma_m = \text{sign}(\delta_m)\sqrt{|\delta_m|}$ and testing the hypothesis $\gamma_p = \gamma_m = 0$ in (1) is equivalent to testing $\delta_p = \delta_m = 0$ in the following model:

$$\log \text{it}(P(Y_i^j \leq k| U^i_j, v^j)) = x^j_1 \beta + x^j_2 + \text{sign}(\delta_p)\sqrt{|\delta_p|}U^{j}_{gp,j} + \text{sign}(\delta_m)\sqrt{|\delta_m|}U^{j}_{gm,j} + \gamma_e U^i_j,$$

for $i = 1, \ldots, n$, $j = 1, \ldots, n_i$, $k = 0, 1, \ldots, K - 1$.

The log-likelihood function for the ith family is the following function of ω, γ_p and γ_m,

$$l'(\omega, \gamma_p, \gamma_m) = \log \int \int \sum_{v \in V} P^i(\omega, \gamma_p, \gamma_m)p(v) \prod_{j=1}^{2i} dG(U^i_j)dF(U^i_j),$$

where V is the set of all possible inheritance vectors for the ith family, $F(\cdot)$ and $G(\cdot)$ are the cumulative distribution function of U^i_j and U^i_j.

$$P^i(\omega, \gamma_p, \gamma_m) = \prod_{j=1}^{n_i} I(Y_i^j = k)[\pi^i_{k,j}(\omega, \gamma_p, \gamma_m) - \pi^i_{k-1,j}(\omega, \gamma_p, \gamma_m)],$$

$$\pi^i_{k,j}(\omega, \gamma_p, \gamma_m) = \frac{\exp(x^j_1 \beta + x^j_2 + \gamma_p U^{j}_{gp,j} + \gamma_m U^{j}_{gm,j} + \gamma_e U^i_j)}{1 + \exp(x^j_1 \beta + x^j_2 + \gamma_p U^{j}_{gp,j} + \gamma_m U^{j}_{gm,j} + \gamma_e U^i_j)}$$

for $k = 0, 1, \ldots, K - 1$,

$$\pi^i_{-1,j}(\omega, \gamma_p, \gamma_m) = 0 \text{ and } \pi^i_{K,j}(\omega, \gamma_p, \gamma_m) = 1.$$

Let $\eta^i_j = \text{sign}(\delta_p)\sqrt{|\delta_p|}U^{j}_{gp,j}$ and $\eta^i = (\eta^i_1, \ldots, \eta^i_{n_i})$. If we assume the contributions from the paternal and maternal alleles are independent, a straightforward calculation can show that

$$\lim_{\delta_p \to 0} \int \frac{\partial P^i(\omega, \eta^i_j, \gamma_m)}{\partial \eta^i_j} U^i_j dG(U^i_j) \equiv \lim_{\delta_p \to 0} \sum_{j=1}^{n_i} \int \frac{\partial P^i(\omega, \eta^i_j, 0)}{\partial \eta^i_j} \frac{\partial \eta^i_j}{\partial \delta_p} dG(U^i_j) = 0$$

and that

$$\lim_{\delta_p \to 0} \frac{\partial \int P^i(\omega, \delta_p, \delta_m = 0)dG(U^i_j)}{\partial \delta_p} = 0$$

and

$$\sum_{j=1}^{n_i} \frac{\partial^2 P^i(\omega, 0, 0)}{\partial \eta^i_j \partial \delta_p} dG(U^i_j)$$

Similarly, let $\xi^i_{ji} = \text{sign}(\delta_m)\sqrt{|\delta_m|}U^{j}_{gm,j}$, we can have

$$\lim_{\delta_m \to 0} \frac{\partial \int P^i(\omega, \delta_p = 0, \delta_m)dG(U^i_j)}{\partial \delta_m} = 0$$

Genet. Epidemiol. DOI 10.1002/gepi
Also, for non-inbred individuals \(j\) and \(l\) within the \(i\)th pedigree, we have
\[
\sum_{v \in V} E(U^j_{g_{2j}} U^l_{g_{2l}})p(v) = \sum_{v \in V} \text{cov}(U^j_{g_{2j}}, U^l_{g_{2l}})p(v) = \sum_{v \in V} \text{cov}(U^j_{g,v_{2j-1}}, U^l_{g,v_{2l-1}})p(v) \\
= \sum_{v \in V} I(v^j_{2j-1} = v^l_{2l-1})p(v) = q^j_{p,dl} \quad \text{and} \quad \sum_{v \in V} E(U^j_{g_{m_j}} U^l_{g_{m_l}})p(v) = q^l_{m,dl},
\]
where \(q^j_{p,dl}\) and \(q^l_{m,dl}\) is the number of paternal alleles and maternal alleles shared by the \(j\)th and \(l\)th individuals at the testing locus, respectively.

Thus, the score vector for testing the hypothesis concerning \(\delta_p\) and \(\delta_m\) is as follows:
\[
S = \begin{pmatrix} S_p \\ S_m \end{pmatrix} = \left(\begin{array}{c}
\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_j \partial \eta^l_l} \\
\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_j \partial \eta^l_l} \\
\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_l \partial \eta^l_j} \\
\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_l \partial \eta^l_j} \\
\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_l \partial \eta^l_l} \\
\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_l \partial \eta^l_l}
\end{array} \right) \frac{\partial}{\partial \eta^j_j} \left[\frac{\partial}{\partial \eta^l_l} \log P(\omega, 0) \right] = \begin{pmatrix}
\frac{\partial}{\partial \eta^j_j} \log P(\omega, 0) \\
\frac{\partial}{\partial \eta^l_l} \log P(\omega, 0) \\
\frac{\partial}{\partial \eta^j_l} \log P(\omega, 0)
\end{pmatrix}
\]

Furthermore, we have
\[
\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_j \partial \eta^l_l} = \frac{\partial^2 P(\omega, 0)}{\partial \eta^j_j \partial \eta^l_l} = P(\omega, 0) \left[\frac{\partial}{\partial \eta^j_j} \log P(\omega, 0) \right] \frac{\partial}{\partial \eta^l_l} \log P(\omega, 0) + \frac{\partial^2}{\partial \eta^j_j \partial \eta^l_l} \log P(\omega, 0) \right].
\]

where
\[
\frac{\partial}{\partial \eta^j_j} \log P(\omega, 0) |_{\eta^j_j = 0} = I(Y^j = r)(1 - \pi^j_j(\omega, 0) - \pi^j_{r-1,j}(\omega, 0)),
\]
\[
\frac{\partial^2}{\partial \eta^j_l \partial \eta^l_j} \log P(\omega, 0) |_{\eta^j_j = 0} = -I(Y^j = r)[\pi^j_j(\omega, 0)(1 - \pi^j_j(\omega, 0)) + \pi^j_{r-1,j}(\omega, 0)(1 - \pi^j_{r-1,j}(\omega, 0))],
\]
\[
\frac{\partial^2}{\partial \eta^j_l \partial \eta^l_l} \log P(\omega, 0) |_{\eta^j_l = 0} = 0, \quad \text{for} \quad j \neq l.
\]

Substituting \(\frac{\partial^2 P(\omega, 0)}{\partial \eta^j_j \partial \eta^l_l}\) in (9) with (10), we have the score vector as expressed in (2). The important ingredients, numbers of paternal and maternal alleles sharing IBD between two relatives, can be obtained through the genetic marker information.